Top 20+ why is climate change a concern

Below is a list of the best why is climate change a concern voted by users and compiled by us, invite you to learn together

Table of Contents

Understanding the Big Picture

The Earth’s climate is changing and the global climate is projected to continue to change over this century and beyond. The magnitude of climate change beyond the next few decades will depend primarily on the amount of greenhouse (heat-trapping) gases emitted globally and on the remaining uncertainty in the sensitivity of the Earth’s climate to those emissions. With significant reductions in the emissions of greenhouse gases (GHGs), global annual averaged temperature rise could be limited to 2°C or less. However, without major reductions in these emissions, the increase in annual average global temperatures, relative to preindustrial times, could reach 5°C or more by the end of this century.

The global climate continues to change rapidly compared to the pace of the natural variations in climate that have occurred throughout Earth’s history. Trends in globally averaged temperature, sea level rise, upper-ocean heat content, land-based ice melt, arctic sea ice, depth of seasonal permafrost thaw, and other climate variables provide consistent evidence of a warming planet. These observed trends are robust and confirmed by multiple, independent research groups around the world.

Observations of the climate system are based on direct physical and biogeochemical measurements, and remote sensing from ground stations and satellites. Information derived from paleoclimate archives provides a long-term context of past climates. Different types of environmental evidence are used to understand what the Earth’s past climate was like and why. Records of historical climate conditions are preserved in tree rings, locked in the skeletons of tropical coral reefs, sealed in glaciers and ice caps, and buried in laminated sediments from lakes and the ocean. Scientists can use those environmental recorders to estimate past conditions, extending our understanding of climate back hundreds to millions of years. Global-scale observations from the instrumental era began in the mid-19th century, and paleoclimate reconstructions extend the record of some quantities back hundreds to millions of years. Together, this provides a comprehensive view of the variability and long-term changes in the atmosphere, the ocean, the cryosphere and at the land surface.

Paleoclimate

Reconstructions from paleoclimate archives allow current changes in atmospheric composition, sea level and climate systems (including extreme events such as droughts and floods), as well as projections of future climates, to be placed in a broader perspective of past climate variability. Past climate information also documents the behavior of slow components of the climate system including the carbon cycle, ice sheets and the deep ocean for which instrumental records are short compared to their characteristic time scales of responses to perturbations, thus informing on mechanisms of abrupt and irreversible changes. Climate records over past centuries and millennia indicate that average temperatures in recent decades over much of the world have been much higher, and have risen faster during this time period, than at any time for which the historical global distribution of surface temperatures can be reconstructed.

Paleoclimate can help us understand climate change on a geological timescale rather than a few human generations. Figure 1 presents paleoclimate reconstruction for the Northern Hemisphere(NH), which reveals average annual temperatures, for the period 1983-2012 was very likely the warmest 30-year period of the last 800 years and likely the warmest 30-year period of the last 1400 years. a) shows the radiative forcing due to volcanic, solar and well-mixed greenhouse gases (WMGHGs). Different colors illustrate the two existing data sets for volcanic forcing and four estimates of solar forcing and the grey line represents WMGHGs for the period 850-2000. b) represents the simulated (red) and reconstructed (shading) Northern Hemisphere temperature anomalies. The thick red line depicts the multi-model mean while the thin red lines show the multi-model 90% range. The overlap of reconstructed temperatures is shown by grey shading.

Fig1

Figure 1. a) Radiative forcing (W/m2) due to volcanic, solar and well-mixed greenhouse gases for the period 850-2000. b) Reconstructed (grey) and simulated (red) Northern Hemisphere Temperature Anomalies for the period 850-2000.

Model projections (Figure 2) indicate that twenty-first century global average warming will substantially exceed the Last Glacial Maximum period and even the warmest Holocene conditions; producing a climate state not previously experienced.

Fig2

Figure 2. Model-simulated global temperature anomalies for the Last Glacial Maximum (21,000 years ago), the mid-Holocene (6,000 years ago), and projection for 2071-2095, under RCP8.5

What this means

Earth’s climate is now changing faster than at any point in the known history of the climate, primarily as a result of human activities. There is scientific consensus that unmitigated carbon emissions will lead to global warming of at least several degrees Celsius by 2100, resulting in high-impacts of local, regional and global risks to human society and natural ecosystems. Global climate change has already resulted in a wide range of impacts across every region of the earth as well as many economic sectors.

Impacts related to climate change are evident across regions and in many sectors important to society, such as human health, agriculture and food security, water supply, transportation, energy, and biodiversity and ecosystems; impacts are expected to become increasingly disruptive in the coming decades. There is very high confidence that the frequency and intensity of extreme heat and heavy precipitation events are increasing in most continental regions of the world. These trends are consistent with expected physical responses to a warming climate. The frequency and intensity of extreme high temperature events are virtually certain to increase in the future as global temperature increases. There is high confidence that extreme precipitation events will very likely continue to increase in frequency and intensity throughout most of the world. Observed and projected trends for other types of extreme events, such as floods, droughts, and severe storms, have more variable regional characteristics.

What is Climate Change

Observed changes over the 20th century include increases in global air and ocean temperature, rising global sea levels, long-term sustained widespread reduction of snow and ice cover, and changes in atmospheric and ocean circulation as well as regional weather patterns, which influence seasonal rainfall conditions. These changes are caused by extra heat in the climate system due to the addition of greenhouse gases to the atmosphere. These additional greenhouse gases are primarily input by human activities such as the burning of fossil fuels (coal, oil, and natural gas), deforestation, agriculture, and land-use changes. These activities increase the amount of ‘heat-trapping’ greenhouse gases in the atmosphere. The pattern of observed changes in the climate system is consistent with an increased greenhouse effect. Other climatic influences such as volcanoes, the sun and natural variability cannot alone explain the timing and extent of the observed changes.

Climate, refers to the long-term regional or global average of temperature, humidity and rainfall patterns over seasons, years or decades.

While the weather can change in just a few hours, climate changes over longer timeframes. Climate change is the significant variation of average weather conditions becoming, for example, warmer, wetter, or drier—over several decades or longer. It is the longer-term trend that differentiates climate change from natural weather variability.

Human activity leads to change in the atmospheric composition either directly (via emissions of gases or particles) or indirectly (via atmospheric chemistry). Anthropogenic emissions have driven the changes in WMGHG concentrations during the Industrial Era. Radiative forcing (RF) is a measure of the net change in the energy balance of the Earth system in response to some external perturbation; positive RF leads to a warming and negative RF to a cooling. The RF concept is valuable for comparing the influence on global mean surface temperature of most individual agents affecting the Earth’s radiation balance. Figure 3 shows the Radiative Forcing and Effective Radiative Forcing (ERF), by concentration change, between 1750 and 2011, with associated uncertainty range.

Fig3

Figure 3. Radiative Forcing (RF) and Effective Radiative Forcing (ERF) of climate change during the Industrial Era, 1750-2011. Solid bars are ERF, hatched bars are RF, green diamonds and associated uncertainties are for RF.

Figure 4. Total annual anthropogenic greenhouse gas (GHG) emissions (gigatonne of CO2-equivalent per year, GtCO2-eq/yr) for the period 1970 to 2010, by gases.

Fig4

Figure 4. Total annual anthropogenic GHG emissions by gases for the period, 1970-2010. Gas: CO2 from fossil fuel combustion and industrial processes; CO2 from Forestry and Other Land Use (FOLU); methane (CH4); nitrous oxide (N2O); fluorinated gases covered under the Kyoto Protocol (F-gases).

Understanding Future Climate Scenarios

Understanding our current and future climate are questions that are too large and too complex to be tackled by a single country, agency or scientific discipline. Through international scientific cooperation and partnerships, the World Climate Research Program (WCRP) supports the coordination for the production of global and regional climate model compilations, which advance our understanding of the multi-scale dynamic interactions between natural and social systems that affect climate. These efforts produce the Coupled Model Inter-comparison Projects, or CMIPs.

The climate science community relies on models to understand the Earth’s carbon cycle feedbacks in response to anthropogenic emissions, which lead to changes in atmospheric concentrations of greenhouse gases and aerosol, and thus ultimately result in radiative forcings that drive the climate system changes. The CMIPs provide a coordinating framework for these studies by defining a suite of model experiments for coupled atmosphere-ocean general circulation and Earth system models. Next to more process-oriented studies, one suite of experiments under CMIP is always focused on the climate response to different plausible future societal development storylines and associated contrasting emission pathways (scenarios). The goal of these ‘scenarios’ is to outline how future emissions and land use changes could translate into responses in the climate system. While independent of the regularly produced IPCC-UNFCCC Assessment Reports, CMIP results nevertheless are coordinated and directly inform the Assessments. CMIP phase 5 (CMIP5) provided the foundation for the 5th Assessment Report released in 2013 and 2014, and the 6th Assessment Report released in 2021 and 2022, is drawing from CMIP6, the latest collection of simulations done by the climate science community around the world.

The scenario approach is used to characterize the range of plausible climate futures and to illustrate the consequences of different pathways (policy choices, technological changes, etc). They are chosen to span a wide range without any tie to likelihood; the scenarios serve as ‘what if’ cases. Over the past three decades, the approach to formulating the different ‘scenarios’ has evolved from a climate-centric to an increasingly societal development-centric concept, albeit with the same underlying goal of providing insight into a range of plausible climate outcomes. To distinguish the magnitude of climate forcing, the numbering reflects a designated amount of radiative forcing measured in watts per square meter (W/m2) reached by 2100 (i.e., 2.6, 4.5, 6.0 and 8.5 W/m2 of change over pre-industrial, respectively). CMIP6 introduces 1.9 W/m2 to offer insight into the climate response that might be reflective of the Paris-Accord target. The CMIP model results, as driven by scenarios, have become standard reference inputs for work concerning climate change science, impacts, vulnerability, adaptation, and mitigation. Scenarios should be used as tools to help understand the characteristics and magnitude of emerging climate signals to inform decisions. Focusing solely on end-of-century outcomes is an inadequate way to evaluate the usefulness of a given scenario. For purposes of informing societal decisions, shorter time horizons are highly relevant.

CMIP5

The Representative Concentration Pathways (RCPs), presented in CMIP5, describe four different 21st century pathways. The RCPs include a stringent mitigation scenario (RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0) and one scenario with high GHG emissions (RCP8.5). Scenarios without additional efforts to constrain emissions (’baseline scenarios’) lead to pathways ranging between RCP6.0 and RCP8.5. Each RCP shows the planet trapping progressively higher amounts of energy from RCP2.6 (the lowest) to RCP8.5 (the highest). Figure 5 shows the GHG emission pathways for each RCP through to the end of the century.

Fig5

Figure 5. GHG Emission Pathways for each RCP from 2000-2100.

RCP scenarios are described below.

  • Stringent mitigation scenario (RCP2.6): A “peak-and-decline” scenario; its radiative forcing level first reaches a value of around 3.1 W/m2 by mid-century and returns to 2.6 W/m2 by 2100. In order to reach such radiative forcing levels, GHG emissions (and indirectly emissions of air pollutants) are reduced substantially over time. RCP2.6 is representative of a scenario that aims to keep global warming likely below 2°C above pre-industrial temperatures

  • Medium-low emissions scenario (RCP4.5): A stabilization scenario which assumes action is taken to curb climate change by all countries resulting in a global average temperature rise of no more than 2 ºC and 3 ºC above pre-industrial temperature levels by the year 2100.

  • Medium-high emission scenario (RCP6.0): A stabilization scenario in which total radiative forcing is stabilized shortly after 2100, without overshoot by the application of a range of technologies and strategies for reducing GHG emissions

  • High-end emissions scenario (RCP8.5): This scenario represents the extreme end of plausible climate change, delivering an estimated global average temperature increase of approximately 5-6ºC by 2100, relative to pre-industrial temperature levels. RCP8.5 is commonly recognized as ‘business as usual’.

CMIP6

The associated socio-economic narratives for each RCP scenario are called the Shared Socioeconomic Pathways (SSPs), which have been introduced in CMIP6. They represent possible societal development and policy paths for meeting designated radiative forcing by the end of the century. CMIP6 includes scenarios with high and very high GHG emissions (SSP3-7.0 and SSP5-8.5) and CO2 emissions that roughly double from current levels by 2100 and 2050, respectively, scenarios with intermediate GHG emissions (SSP2-4.5) and CO2 emissions remaining around current levels until the middle of the century, and scenarios with very low and low GHG emissions and CO2 emissions declining to net zero around or after 2050, followed by varying levels of net negative CO2 emissions (SSP1-1.9 and SSP1-2.6). Emissions vary between scenarios depending on socio-economic assumptions, levels of climate change mitigation and, for aerosols and non-methane ozone precursors, air pollution controls. Alternative assumptions may result in similar emissions and climate responses, but the socio-economic assumptions and the feasibility or likelihood of individual scenarios are not part of the assessment. Figure 6 presents future emissions and additional warming causes for each of the SSPs.

" "

Figure 6. a) presents the annual anthropogenic (human-caused) emissions over the 2015-2100 period. Shown are emissions trajectories for carbon dioxide (CO2) from all sectors (GtCO2/yr) (left graph) and for a subset of three key non-CO2 drivers considered in the scenarios: methane (CH4, MtCH4/yr); nitrous oxide (N2O, MtN2O/yr); and sulphur dioxide (SO2, MtSO2/yr), contributing to anthropogenic aerosols in panel (b). b) demonstrates the change in global surface temperature (°C) in 2081-2100 relative to 1850-1900 given the warming contributions by groups of anthropogenic drivers and by scenario, with indication of the observed warming to date. Bars and whiskers represent median values and the very likely range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C); warming contributions from changes in CO2; non-CO2 greenhouse gases and net cooling from other anthropogenic drivers (‘aerosols and land use’ bar).

Narrative descriptions for the Shared Socioeconomic Pathways:

SSP1 “Sustainability” (Low challenges to mitigation and adaptation)The world shifts gradually, but pervasively, toward a more sustainable path, emphasizing more inclusive development that respects perceived environmental boundaries. Management of the global commons slowly improves, educational and health investments accelerate the demographic transition, and the emphasis on economic growth shifts toward a broader emphasis on human well-being. Driven by an increasing commitment to achieving development goals, inequality is reduced both across and within countries. Consumption is oriented toward low material growth and lower resource and energy intensity. The combination of directed development of environmentally friendly technologies, a favorable outlook for renewable energy, institutions that can facilitate international cooperation, and relatively low energy demand results in relatively low challenges to mitigation. At the same time, the improvements in human well-being, along with strong and flexible global, regional, and national institutions imply low challenges to adaptation.

SSP2 “Middle of the Road” (Medium challenges to mitigation and adaptation)The world follows a path in which social, economic, and technological trends do not shift markedly from historical patterns. Development and income growth proceeds unevenly, with some countries making relatively good progress while others fall short of expectations. Global and national institutions work toward but make slow progress in achieving sustainable development goals. Environmental systems experience degradation, although there are some improvements and overall the intensity of resource and energy use declines. Global population growth is moderate and levels off in the second half of the century. Income inequality persists or improves only slowly and challenges to reducing vulnerability to societal and environmental changes remain. These moderate development trends leave the world, on average, facing moderate challenges to mitigation and adaptation, but with significant heterogeneities across and within countries

SSP3 “Regional Rivalry” (High challenges to mitigation and adaptation)A resurgent nationalism, concerns about competitiveness and security, and regional conflicts push countries to increasingly focus on domestic or, at most, regional issues. Policies shift over time to become increasingly oriented toward national and regional security issues. Countries focus on achieving energy and food security goals within their own regions at the expense of broader-based development. Investments in education and technological development decline. Economic development is slow, consumption is material-intensive, and inequalities persist or worsen over time. Population growth is low in industrialized and high in developing countries. A low international priority for addressing environmental concerns leads to strong environmental degradation in some regions. Growing resource intensity and fossil fuel dependency along with difficulty in achieving international cooperation and slow technological change imply high challenges to mitigation. The limited progress on human development, slow income growth, and lack of effective institutions, especially those that can act across regions, implies high challenges to adaptation for many groups in all regions.

SSP5 “Fossil-fueled Development” (High challenges to mitigation, low challenges to adaptation)This world places increasing faith in competitive markets, innovation and participatory societies to produce rapid technological progress and development of human capital as the path to sustainable development. Global markets are increasingly integrated. There are also strong investments in health, education, and institutions to enhance human and social capital. At the same time, the push for economic and social development is coupled with the exploitation of abundant fossil fuel resources and the adoption of resource and energy intensive lifestyles around the world. All these factors lead to rapid growth of the global economy, while global population peaks and declines in the 21st century. Local environmental problems like air pollution are successfully managed. There is faith in the ability to effectively manage social and ecological systems, including by geo-engineering if necessary. While local environmental impacts are addressed effectively by technological solutions, there is relatively little effort to avoid potential global environmental impacts due to a perceived tradeoff with progress on economic development. The strong reliance on fossil fuels and the lack of global environmental concern result in potentially high challenges to mitigation. The attainment of human development goals, robust economic growth, and highly engineered infrastructure results in relatively low challenges to adaptation to any potential climate change for all but a few.

For a complete description of SSP Narratives, see O’Neill et al. 2017

Individual Models vs. Multi-Model Ensembles

Climate models are mathematical representations of processes important in the Earth’s climate system. When a climate model is run it produces a ‘simulation’ of future climate. Multiple simulations form an ensemble. A multi-model ensemble (MME) therefore is a large number of climate model simulations. CCKP prioritizes use of MMEs for its projections as multi-model ensembles are more robust and proven to be most successful in representing the range of expected changes. Differences between the spatial structure of the data and the structure of the reality it represents must also be understood and considered in order to adequately model the impact of spatial uncertainty on model applications. While, individual models are noisier, on occasion they may better reflect the range of variability compared to the multi-model ensemble that is generally too smooth. Individual models can also have systematic biases that present themselves as strong outliers. A comparison with the multi-model ensemble is helpful to identify these potential biases and outliers.

Variability, Trends, Uncertainty

Decadal, inter-annual, and inter-seasonal variability exists across the climate system. Internal variability can diminish the relevance of trends over periods as short as 10 to 15 years from long-term climate change. A critical effort of projecting climate change is to understand if ‘change’ is part of the natural variability or if projected change reveals trends that are statistically significant from natural variability. Due to this, natural variability trends based on short records are very sensitive to the beginning and end dates and do not, in general, reflect longer-term climate trends.

Uncertainty exists for any future projection. While advances continue to be made in the understanding of climate physics and the response of the climate system to increases in greenhouse gases, many uncertainties are likely to persist. The rate of future global warming depends on future emissions, feedback processes that dampen or reinforce disturbances to the climate system, and unpredictable natural influences on climate, like volcanic eruptions. Uncertain processes that will affect how fast the world warms for a given emissions pathway are dominated by cloud formation, but also include water vapor and ice feedbacks, ocean circulation changes, and natural cycles of greenhouse gases. Although information from past climate changes largely corroborates model calculations, this is also can have a degree of uncertainty due to potentially important factors about which we have incomplete information.

References

Clark, P., Shakun, J., Marcott, S. et al., 2016: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim Change 6, 360-369. DOI:https://doi.org/10.1038/nclimate2923

IPCC, 2013: Climate Change 2013: Technical Summary. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. URL:https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_TS_FINAL.pdf

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. URL: https://ar5-syr.ipcc.ch/ipcc/ipcc/resources/pdf/IPCC_SynthesisReport.pdf

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press. URL:https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf

International Institute for Applied Systems Analysis (IIASA), 2014: Representative Concentration Pathways Database. URL: https://iiasa.ac.at/web/home/research/researchPrograms/TransitionstoNewTechnologies/RCP.en.html

Kriegler, E., Edmonds, J., Hallegatte, S., et al., 2014: A new scenario framework for climate change research: the concept of shared climate policy assumptions, Climatic Change 122:401-414. DOI:doi:10.1007/s10584-013-0971-5

O’Neill, B., Tebaldi, C., Van Vuuren, D., et al., 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geoscience Model Development 9, 3461-3482. DOI:doi:10.5194/gmd-9-3461-2016

O’Neill, B., Kriegler, E., Ebi, K. et al., 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42, 169-180. DOI:https://doi.org/10.1016/j.gloenvcha.2015.01.004

O’Neill, B., Carter, T., Ebi, K., et al., 2020: Achievements and needs for the climate change scenario framework. Nature Climate Change 10, 1074-1084. DOI:https://doi.org/10.1038/s41558-020-00952-0

Riahi, K. van Vuuren, D., Kriegler, E., et al. 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change 42, 153-168. DOI:doi:10.1016/j.gloenvcha.2016.05.009

Van Vuuren, D., Edmonds, J. Kainuma, M., et al., 2011: The representative concentration pathways: an overview, Climatic Change volume 109, Article number: 5. DOI: doi:10.1007/s10584-011-0148-z

World Climate Research Program (WCRP), 2021: WCRP Coupled Model Intercomparison Project (CMIP). URL: https://www.wcrp-climate.org/wgcm-cmip

World Climate Research Program (WCRP), 2021: PMIP – Paleoclimate Modeling Intercomparison Project. URL: https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1064-modelling-cmip6-pmip

Top 23 why is climate change a concern edit by Top Q&A

Climate change widespread, rapid, and intensifying – IPCC

  • Author: ipcc.ch
  • Published Date: 03/02/2022
  • Review: 4.72 (234 vote)
  • Summary: However, strong and sustained reductions in emissions of carbon dioxide (CO2) and other greenhouse gases would limit climate change.
  • Matching search results: Climate Change and Land, an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems was launched in August 2019, and the Special Report …

Global Warming 101 – Definition, Facts, Causes and Effects … – NRDC

  • Author: nrdc.org
  • Published Date: 12/07/2021
  • Review: 4.47 (229 vote)
  • Summary: What is global warming? Global warming causes, effects, extreme weather, facts, and relation to climate change.
  • Matching search results: Climate Change and Land, an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems was launched in August 2019, and the Special Report …

How climate change increases hunger (and why we’re all at risk)

  • Author: concernusa.org
  • Published Date: 01/25/2022
  • Review: 4.36 (463 vote)
  • Summary: Climate change is a threat multiplier for hunger, … as part of the 2019 Global Hunger Index (co-produced by Concern and Welthungerhilfe).
  • Matching search results: The last few years have made it clear that this cannot happen in isolation. We must foster global solidarity with the most climate-vulnerable communities and countries. High-income countries (especially those with the highest greenhouse emissions) …

What is climate change and why does it matter?

  • Author: nhm.ac.uk
  • Published Date: 02/13/2022
  • Review: 4.16 (271 vote)
  • Summary: Climate change is just one of the stressors currently impacting nature. Sea use, invasive species, pollution and the exploitation of organisms are all factors …
  • Matching search results: The last few years have made it clear that this cannot happen in isolation. We must foster global solidarity with the most climate-vulnerable communities and countries. High-income countries (especially those with the highest greenhouse emissions) …

Effects of climate change – Met Office

  • Author: metoffice.gov.uk
  • Published Date: 01/27/2022
  • Review: 3.91 (313 vote)
  • Summary: These changes can increase the risk of heatwaves, floods, droughts, and fires. What are the effects of climate change? A changing climate impacts crop growth …
  • Matching search results: Floods can also happen when heavy rainfall overwhelms drainage systems or bursts river banks. In heavily concreted urban areas and cities, the effect is more severe because the water cannot sink directly into the soil. Flooding causes severe damage …

Why do the sides of my neck hurt

Climate change impacts

  • Author: noaa.gov
  • Published Date: 05/26/2022
  • Review: 3.79 (327 vote)
  • Summary: Climate change is already impacting human health. Changes in weather and climate patterns can put lives at risk. Heat is one of the most deadly …
  • Matching search results: Floods can also happen when heavy rainfall overwhelms drainage systems or bursts river banks. In heavily concreted urban areas and cities, the effect is more severe because the water cannot sink directly into the soil. Flooding causes severe damage …

Climate Change – the United Nations

  • Author: un.org
  • Published Date: 03/22/2022
  • Review: 3.52 (292 vote)
  • Summary: Climate change is one of the major challenges of our time. From shifting weather patterns that threaten food production, to rising sea levels that increase …
  • Matching search results: The latest scientific report by the IPCC finds changes in the Earth’s climate in every region and across the whole climate system. Many changes are unprecedented in thousands, if not hundreds of thousands of years. Some, such as continued sea-level …

6. Climate is always changing. Why is climate change of concern now?

  • Author: royalsociety.org
  • Published Date: 01/13/2022
  • Review: 3.21 (266 vote)
  • Summary: All major climate changes, including natural ones, are disruptive. Past climate changes led to extinction of many species, population migrations, …
  • Matching search results: The latest scientific report by the IPCC finds changes in the Earth’s climate in every region and across the whole climate system. Many changes are unprecedented in thousands, if not hundreds of thousands of years. Some, such as continued sea-level …

Climate change and health – Better Health Channel

  • Author: betterhealth.vic.gov.au
  • Published Date: 07/02/2022
  • Review: 3.14 (493 vote)
  • Summary: Who is most at risk of health effects due to climate change? Extreme weather events; Staying healthy in a changing climate; Actions to reduce your contribution …
  • Matching search results: Climate change is a change in the world’s weather systems that occurs over decades. Most of the recent changes in our climate have been brought about by human activity. Without intervention, the changing climate will have far-reaching and …

Harvard experts discuss climate change fears

  • Author: news.harvard.edu
  • Published Date: 10/11/2022
  • Review: 2.83 (63 vote)
  • Summary: As our activities increasingly alter the climate — with direct impacts including hotter heat waves, stronger storms, bigger floods, larger …
  • Matching search results: Third, impacts of global climate change are already causing serious damage to human health and safety, property, infrastructure, and terrestrial and marine ecosystems, even though the increase in the annually and globally averaged surface …

Climate change and health – World Health Organization (WHO)

  • Author: who.int
  • Published Date: 09/20/2022
  • Review: 2.69 (165 vote)
  • Summary: Climate change affects the social and environmental determinants of health – clean air, safe drinking water, sufficient food and secure shelter.
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

Top 15 why are there ads on hulu

Climate Effects on Health – CDC

  • Author: cdc.gov
  • Published Date: 01/21/2022
  • Review: 2.78 (131 vote)
  • Summary: Climate change, together with other natural and human-made health stressors, influences human health and disease in numerous ways.
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

Climate change the greatest threat the world has ever faced, UN expert warns

  • Author: ohchr.org
  • Published Date: 02/13/2022
  • Review: 2.49 (156 vote)
  • Summary: NEW YORK (21 October 2022) – Human-induced climate change is the largest, most pervasive threat to the natural environment and societies the …
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

Why is climate change happening and what are the causes?

  • Author: usgs.gov
  • Published Date: 12/12/2021
  • Review: 2.49 (108 vote)
  • Summary: Climate change has always happened on Earth, which is clearly seen in the geological … of climate change occurring now that is of great concern worldwide.
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

Climate change is one of the biggest challenges of our times

  • Author: eea.europa.eu
  • Published Date: 03/11/2022
  • Review: 2.48 (119 vote)
  • Summary: Climate change is already happening: temperatures are rising, drought and wild fires are starting to occur more frequently, rainfall patterns …
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

What is Concern doing to fight the effects of climate change?

  • Author: concern.net
  • Published Date: 03/16/2022
  • Review: 2.37 (167 vote)
  • Summary: The impacts of climate change are expected to make the poor poorer and increase the total number of people living in poverty. Michael Mulpeter – Climate Change …
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

This is why fighting climate change is so urgent

  • Author: edf.org
  • Published Date: 06/12/2022
  • Review: 2.23 (188 vote)
  • Summary: A warmer world — even by a half-degree Celsius — has more evaporation, leading to more water in the atmosphere. Such changing conditions …
  • Matching search results: The climate crisis threatens to undo the last fifty years of progress in development, global health, and poverty reduction, and to further widen existing health inequalities between and within populations. It severely jeopardizes the realization of …

Top 10+ why is my succulent turning yellow

The Effects of Climate Change

  • Author: climate.nasa.gov
  • Published Date: 07/25/2022
  • Review: 2.01 (199 vote)
  • Summary: Southwest. Climate change has caused increased heat, drought, and insect outbreaks. In turn, these changes have made wildfires more numerous and severe. The …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

10 reasons why climate change is important

  • Author: wwf.org.uk
  • Published Date: 12/09/2021
  • Review: 2 (132 vote)
  • Summary: Even a small increase in global temperatures will destabilise the water cycle and could make water scarcity much worse. Climate change affects rainfall patterns …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

Effects of Climate Change on Future Generations | Save the Children

  • Author: savethechildren.org
  • Published Date: 12/31/2021
  • Review: 1.8 (142 vote)
  • Summary: The effects of climate change are expected to severely impact the futures of children around the world. Learn what the effects will be on future …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

Climate Impacts | Union of Concerned Scientists

  • Author: ucsusa.org
  • Published Date: 09/10/2022
  • Review: 1.84 (114 vote)
  • Summary: The direct impacts of climate change are devastating by themselves, but they also worsen existing inequalities and conflicts. For example: hotter temperatures …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

Global warming and climate change effects – National Geographic

  • Author: nationalgeographic.com
  • Published Date: 04/02/2022
  • Review: 1.6 (76 vote)
  • Summary: And the impacts of rising temperatures aren’t waiting for some far-flung future–the effects of global warming are appearing right now. The heat is melting …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

Concern about climate change shrinks globally as threat grows, survey shows

  • Author: theguardian.com
  • Published Date: 02/19/2022
  • Review: 1.63 (82 vote)
  • Summary: Concerns about climate change shrank across the world last year, with fewer than half of those questioned in a new survey believing it posed …
  • Matching search results: The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects …

Related Posts

List of 10+ why won’t doctors prescribe antibiotics

List of 10+ why won’t doctors prescribe antibiotics

Here are the top best why won’t doctors prescribe antibiotics voted by readers and compiled and edited by our team, let’s find out

Top 7 why does my hip hurt so bad

Top 7 why does my hip hurt so bad

Below are the best information about why does my hip hurt so bad voted by readers and compiled and edited by our team, let’s find out

Top 16 why do my clothes smell sour

Top 16 why do my clothes smell sour

Here are the best information about why do my clothes smell sour voted by users and compiled by us, invite you to learn together

List of 9 why am i so stressed

List of 9 why am i so stressed

Here are the top best why am i so stressed voted by users and compiled by us, invite you to learn together

Top 10+ why do people pray

Top 10+ why do people pray

Here are the best information about why do people pray voted by readers and compiled and edited by our team, let’s find out

Top 10+ why did my credit card limit increase

Top 10+ why did my credit card limit increase

Below are the best information about why did my credit card limit increase public topics compiled and compiled by our team